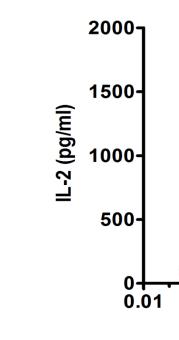


Identification and Characterization of a Potent Anti-Human TIM-3 Antagonist

Abstract

The activation of anti-tumor immunity through the blockade of immune checkpoints has become one of the more promising approaches to tumor therapy. Significant clinical activity in a number of settings has been shown through the blockade of PD-1 or CTLA-4, although there remains room for improving the efficacy of these agents. TIM-3 (T-cell immunoglobulin and mucin-domain containing-3) has been reported to play a role as an additional immune checkpoint which may limit anti-tumor T cell responses. To identify potential therapeutic molecules that could enhance the activity of anti-PD-1 therapy in patients, we have generated a panel of human anti-human TIM-3 antibodies using SHM-XEL[™], which combines mammalian cell display of human IgG with somatic hypermutation in vitro to select and mature antibodies with desired biological activities. Potent anti-TIM-3 antagonist antibodies, with pM affinities for human TIM-3 were identified. These antibodies enhanced T cell function at low nanomolar concentrations as measured by direct cytokine production in vitro, representing the most potent anti-TIM-3 antibodies known. In addition, anti-TIM-3 antibodies augment T cell activation in a dendritic cell/T cell mixed lymphocyte reaction. Assays were developed to enable the evaluation of simultaneous inhibition of multiple checkpoint molecules which demonstrated that combination of anti-TIM-3 therapeutic candidates with a novel anti-PD-1 antibody increased specific human T cell activation over that seen with blockade of a single checkpoint alone. Finally, the activity of anti-TIM-3 antibodies was tested in several syngeneic tumor models, including MC38. Anti-TIM-3 alone showed some inhibition of established MC38 tumor growth but was less potent than anti-PD-1 alone, while the combination of both antibodies resulted in sustained tumor regressions. These data suggest that monotherapy with anti-TIM-3 and combination immunotherapy with anti-TIM-3 and anti-PD-1 is worthy of clinical evaluation

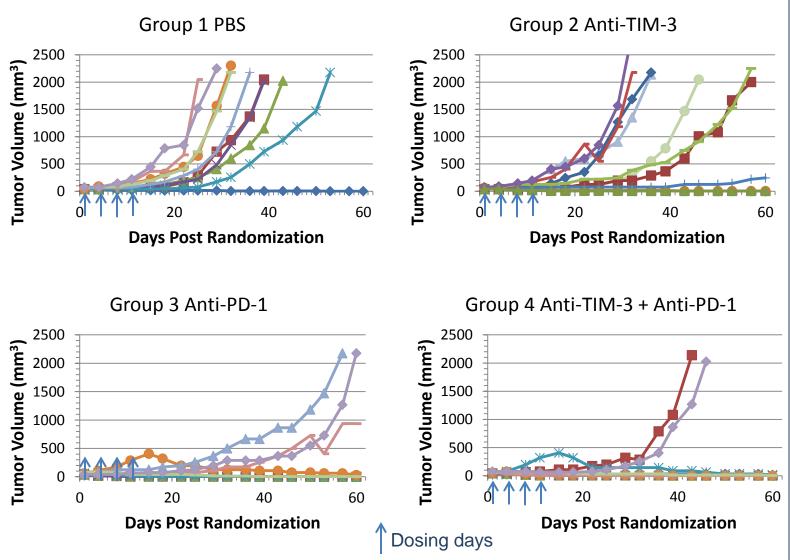


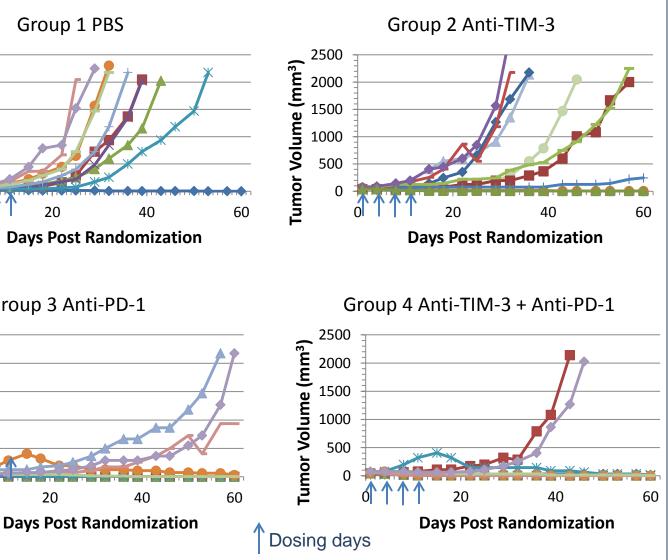
ABEL library screen and maturation overview.

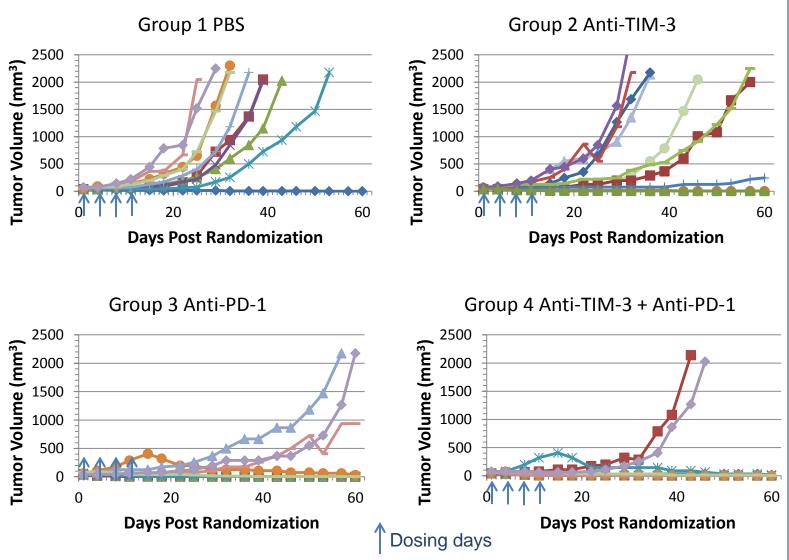
Cells expressing surface-displayed, fully-human antibodies that bind to human TIM-3 were identified from a screening campaign of the ABEL library using magnetic beads coated with huTIM-3 extracellular domain. A panel of antibodies was isolated that bound specifically to TIM-3. Cells displaying antihuman TIM-3 antibodies were then transfected with activation-induced cytidine deaminase (AID) to initiate somatic hypermutation (SHM). Iterative rounds of FACS sorting with decreasing concentrations of antigen were performed to identify mAbs with increased affinity for TIM-3 and improved potency in functional assays.

Maturation of Anti-TIM-3 Antibodies

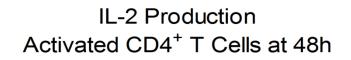
Maturation of the initial library hit antibodies was demonstrated by binding studies using Biacore as well as binding to TIM-3 presented on the surface of a CHO cell line. In addition antibodies with improved binding properties were tested in functional assays. Functional assays included measurement of IL-2 secretion from activated CD4+ T cells, and dendritic cell/T cell MLR.

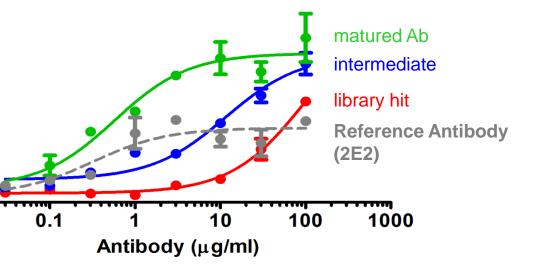



Reference antibody 2E2 was purchased from BioLegend. The antibody is described in Hastings et al., (2009) Eur. J. Immunol. **39**, 2492-2501.

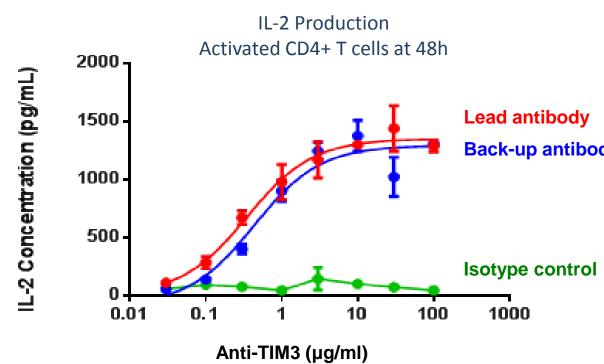

Activity in Syngeneic Tumor Models

Surrogate antibodies recognizing mouse PD-1 (RMP1-14) and mouse TIM-3 (RMT3-23) were purchased from BioXcel, and tested alone and in combination in the MC38 syngeneic tumor model. MC38 tumor cells (1 $\times 10^6$ s.c.) were implanted into C57BI/6 mice and grown for 10 days. Mice with tumors measuring 40-90 mm³ were randomized (day of randomization designated day 1) to 4 groups of 10 animals/group and dosed with each antibody at 10mg/kg on days 1, 4, 8 and 11. Tumor volumes were measured twice weekly until reaching 2000 mm³ which was designated as endpoint and mice were sacrificed. Each line represents the tumor growth for an individual animal.





Jean da Silva Correia, Patty McNeeley, Minjee Do, Larry Altobell, Mark Chhoa, Geoff Tomlinson, Joe Sheffer, Marilyn Kehry, Margaret Marino, Haley Laken*, David J. King AnaptysBio, 10421 Pacific Center Court, San Diego, CA 92121 & *TESARO, 1000 Winter Street, Waltham, MA 02451



Anti-TIM-3 Candidates are Potent in vitro

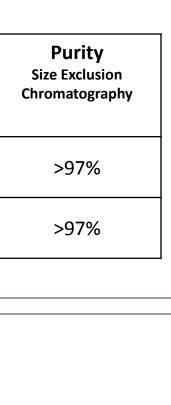
Matured antibodies were characterized to meet stringent requirements for therapeutic antibody development. This included assessment of "developability" criteria as well as functional potency across assays. Developability criteria included thermal stability, expression level, absence of problematic sequence motifs (Variable-region N-linked glycosylation sites, free cysteines, high-likelihood sites for deamidation, isomerization etc.). In addition, high affinity binding to cynomolgus monkey TIM-3 was selected for to facilitate preclinical studies.

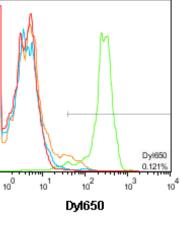
Lead and back-up antibodies with potent antagonistic activity were identified that met all criteria for further development.

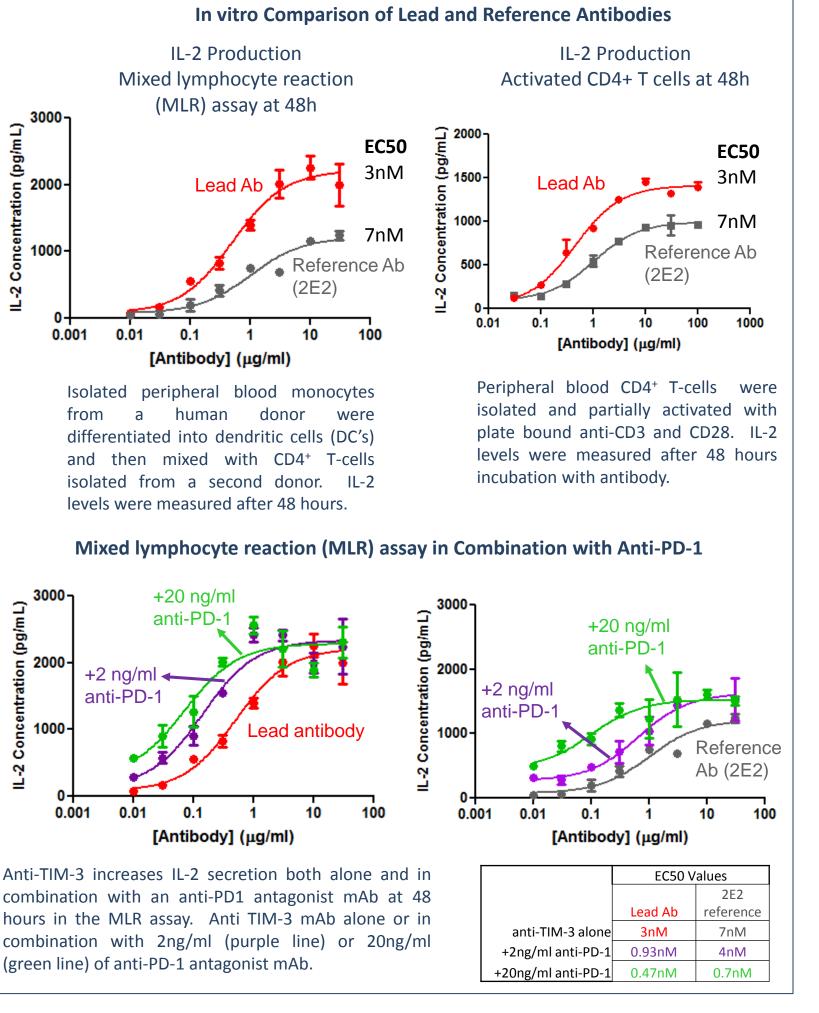
	Biacore KD		Tm	Non-	
	Human TIM-3	Cyno TIM-3	(Thermofluor analysis)	specific binding	
Lead Ab	50 pM	190 pM	72°C	None detectable	
Back-up Ab	<50pM	1.5nM	71°C	None detectable	

TIM-3 expression on activated human CD4⁺ T cells

TIM-3 is expressed on activated T-cells. CD4⁺ T-cells (red line) do not express TIM-3 on the cell surface after purification from human blood. However, 48 hours after culturing with DCs, TIM-3 is highly expressed on the T cells (green line). Levels expressed are subject to donor to donor variation. T cells were also cultured for 48 hours without DCs as a control (blue line). Isotype control staining of activated cells is also shown (orange line). PD-1 is expressed on a subset of CD4⁺ T-cells without DC co-culture and can be upregulated at 24 and 48 hours in the MLR (data not shown). TIM-3 staining used PE conjugated rat anti-human TIM-3 (R&D Systems #344823).


Copies of this poster obtained through Quick Response Code are for personal use only and may not be reproduced without permission from the author of this poster


Anti-TIM-3 Candidates Demonstrate Potent Activity in a Dendritic Cell / T Cell MLR and


Have Increased Activity in Combination with anti-PD-1

	EC50	
ody	2nM	
ntibody	3nM	

Conclusions

- A panel of high affinity anti-human TIM-3 antibodies has been generated using the ABEL library and in vitro somatic hypermutation
- A lead and a back-up antibody have been identified with potent activity in a CD4⁺ T cell assay and an MLR
- Combination with anti-PD-1 leads to improved activity in an MLR
- Surrogate anti-PD-1 and anti-TIM-3 antibodies have activity in the MC38 tumor model
- This data suggests co-blockade of PD-1 and TIM-3 is worthy of further investigation