Rosnilimab, a Depleter and Agonist Antibody Targeting PD-1+ T Cells, in Clinical Development for Ulcerative Colitis, Reduces Pathogenic PD-1+ T Cells and Inflammatory Cytokine Secretion in Patient Blood and in a Mouse Model of Colitis

<u>Pejman Soroosh</u>, Stephen Parmley, Chris Haines, Richard T. Frank, Matthew Hsu, Paulina Brodsky, Yangsu Ren, Paul Lizzul, and Martin Dahl

AnaptysBio, Inc. San Diego, CA, USA

Disclosures: All authors are employees and stockholders of Anaptys

Dysregulation of Programmed Cell Death Protein (PD-1) Signaling Impacts Critical T Cell Responses in Inflammatory Diseases such as UC

PD-1 is a coinhibitory receptor expressed on activated T cells

- Functions to downregulate activated T cells by inducing negative signaling when engaged with its ligand PD-L1
- PD-1 pathway mutations increase human susceptibility to multiple autoimmune diseases; insufficient PD-1 signaling can lead to dysregulated T cell responses

PD-1 expressed preferentially on activated Teff and Tfh/Tph cells mediating autoimmune pathology

PD-1 and its Role in Ulcerative Colitis

Elevated levels of PD-1+ inflammatory cells is associated with active UC and lower remission rates

Adapted from Shi W, et al. The significance of PD-1/PD-L1 imbalance in ulcerative colitis. PeerJ 2023;11:e15481.

Reprinted from Immunology Letters, 233; Long Y, Xia C, Sun Y, Ma Y, Xu L, Song Y, Increased circulating PD-1^{hi}CXCR5- peripheral helper T cells are associated with disease severity of active ulcerative colitis patients, 2-10, 2021, with permission from Elsevier.

Peripheral helper T cell (T_{ph}): support B cell differentiation and maturation

1. Roosenboom B, et al. Scand J Gastroenterol 2021: 56:671-79; 2. Uzzan M, et al. Nature Med 2022;28: 766-779; 3. Shi W, et al. PeerJ 2023:e15481; 4. Long Y, et al. Immunol Letters 2021: 2-10.

Proposed Mechanism of Action for Rosnilimab

Modulation through PD-1 may restore immune homeostasis in numerous autoimmune and inflammatory indications, including UC

Rosnilimab aims to:				
 Rapidly engage homeostatic mechanisms to induce clinical response Achieve durable remission through histologic normalization 				
Immune Cells Impacted	Mechanism	Proposed Immunologic Outcome		
PD-1 ^{high} T _{eff}	depletes ¹	T cell proliferation T cell migration Cytokine secretion		
PD-1 ^{high} T _{fh} /T _{ph}	depletes	<i>downstream effect on B cells</i> Plasma cell generation Autoantibody levels		
PD-1+ T _{eff}	reduces ²	T cell proliferation T cell migration Cytokine secretion		

Antibody attributes contributing to optimal depletion and agonistic function:

- Membrane proximal binding
- FcR engagement

Effector T cells (T_{eff}): activated T cells (cytotoxic, helper, Treg); Follicular/Peripheral Helper T cells (T_{fh}, T_{ph}): support B cell differentiation and maturation 1. Luu K, et al. J Crohn's Colitis;2024:18(suppl 1):i226; 2. Dahl ME, et al. Presented at FOCIS 2022, San Diego, CA, June 21-24, 2022

Membrane Proximal Binding Rosnilimab Results in Greater Reduction of PD-1+ T Cells, T Cell Proliferation and IFN-γ Secretion In Vitro

Rosnilimab Reduced T Cell Proliferation and PD-1+ T Cells

*Compared to isotype control

Rosnilimab epitope Reference 1 epitope PD-L1 binding region

Depletion

Parmley, et al. Presented at the ECCO meeting, Stockholm, Feb 21-24, 2024

Statistical analysis performed using ordinary two-way ANOVA followed by Dunnett's multiple comparisons test with four comparisons per gene and thresholds for significance relied on multiplicity adjusted P values.

FcR Engagement via IgG1 Domain of Rosnilimab Results in Reduced PD-1^{high} T cells and Inflammatory Cytokine Secretion in UC Patient-Derived PBMCs

Rosnilimab IgG1 LALA
 Rosnilimab IgG1

Therapeutic Dosing of Rosnilimab mlgG2a Demonstrated Efficacy in a Murine Model of Colitis

Isotype mIgG2a

Rosnilimab mIgG2a

Study Design for hPD1 CD4+ Transfer Murine Model of Colitis

hPD-1 KI donor Rag2-/- cells recipients	Therapeutic regimen 10 mpk 2x/week for 4 weeks	<u>Groups</u> 1. Naïve (untransferred 2. Isotype mIgG2a 3. Rosnilimab mIgG2a 4. Anti IL-12 p40
Day: 0	21	56

Rosnilimab mlgG2a maintained body weight

Rosnilimab mlgG2a reduced colonic inflammation

Rosnilimab mIgG2a Significantly Reduced CD4+ T Cell Infiltration into the Colon of Mice with Colitis

Blue – DAPI Yellow – CD4

Parmley, et al. Presented at the UEGW meeting, Vienna, Oct 12-15, 2024

Rosnilimab mIgG2a Significantly Reduced Gene Expression of Inflammatory Cytokines in the Colon of Mice with Colitis

Conclusion

- Rosnilimab reduced PD-1^{high} T cells and inflammatory cytokine secretion in UC patient-derived PBMCs in vitro
- In a murine model of colitis, at Day 49, rosnilimab mlgG2a:
 - Demonstrated efficacy with a therapeutic dosing regimen
 - Significantly reduced colonic inflammation measured by histology
 - Reduced CD4+ T cell infiltration, IFN-γ, and CXCL13 expression
 - Reduced lymphocyte and inflammatory myeloid cell gene signatures, and improved barrier function gene signature, all pathways that are relevant in human UC
- Positive topline data from a Ph 2b study of rosnilimab in rheumatoid arthritis (NCT06041269) indicate therapeutic potential for rosnilimab in other inflammatory or autoimmune diseases
- These data, combined with results from existing data in humans, support the rationale for evaluating rosnilimab in moderate-to-severe UC in an ongoing Phase 2 study (NCT06127043)

Acknowledgements

- Bryan Linggi of Anaptys provided support in the generation and analyses of gene signatures of pathways relevant in human UC
- Cynthia Alexander of Anaptys provided significant contribution to the presentation content development and design

