Discovery of a PD-1 Checkpoint Agonist Antibody for Autoimmune/Inflammatory Disease
PD-1 is an Inhibitory Checkpoint Molecule that Down-modulates T Cell Responses

- Immune checkpoint receptor-ligand interactions are essential for down-regulating immune responses and maintaining self-tolerance.
- Functional antagonist antibodies to PD-1 and CTLA-4, major checkpoints on activated T cells, enhance existing immune responses and are approved therapeutics for immuno-oncology.
- Genetic mutations in the PD-1 pathway have been shown to increase susceptibility to various autoimmune and inflammatory diseases.
- We hypothesize that many human autoimmune diseases occur due to dysregulated PD-1 signaling, leading to uncontrolled T cell responses.
- Agonist antibodies to PD-1 that mimic the function of natural ligands and augment PD-1 signaling have the potential to suppress human autoimmune/inflammatory diseases and reinstate tolerance.

Agonist antibodies that negatively signal are expected to restore natural immune modulation.
ANB030 is a Humanized IgG1,κ Hybridoma-derived PD-1 Agonist Antibody

Immunization

sPD-1-Fc
PD-1+ cells

Fusion

Hybridoma

PD-L1 non-blocking hybridomas

Optimization for Tm, affinity, developability

ANB030
Lead candidate

CDR-grafted Ab

Humanization

Purified antibodies: cell binding, PD-1 ligand blocking, agonist activity

PD-1+ cell binders screened for PD-1 ligand competition

ANB030 is PD-L1 non-blocking, optimized for affinity and functional activity
Optimization of ANB030 V_H Sequence for Stability and Affinity

Saturating Mutagenesis at 4 V_H Positions

Humanized V_H
- CDRH1
- CDRH2
- CDRH3

Humanized V_L
- CDRL1
- CDRL2
- CDRL3

Saturating Mutagenesis at 4 V_H Positions

<table>
<thead>
<tr>
<th>ANB030 Variant Antibody</th>
<th>K_D Human PD-1</th>
<th>K_D Cynomolgus PD-1</th>
<th>Fab Tm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mouse chimeric</td>
<td>4.3 nM</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>CDR-grafted</td>
<td>0.19 nM</td>
<td>1.00 nM</td>
<td>61.2°C</td>
</tr>
<tr>
<td>CDR-grafted Optimized (ANB030)</td>
<td>0.075 nM</td>
<td>0.45 nM</td>
<td>66.1°C</td>
</tr>
</tbody>
</table>

Affinity by KinExA

- **Human PD-1**
 - $K_D \approx 75$ pM

- **Cynomolgus Monkey PD-1**
 - $K_D \approx 450$ pM

Optimized for thermal stability and affinity with 2 V_H substitutions

Additionally de-risked in 28-day accelerated stability and pre-formulation studies at 100 mg/ml
ANB030 Binding to PD-1 Does Not Compete with PD-L1 Binding

Ligand non-blocking is desirable to avoid potential antagonist activity
Model of the Epitope Bound by PD-1 Agonist Antibody ANB030

• Regions on PD-1 bound by ANB030 were identified by hydrogen-deuterium exchange (pink, blue) and PD-1 surface point mutations (red)

• Both datasets generated a consistent model of the ANB030 epitope

ANB030 binds PD-1 on a more membrane-proximal region opposite the PD-L1 binding site
ANB030 in Solution Potently Inhibits Whole Blood Tetanus Toxoid Recall Response

PD-1 agonist antibody inhibits tetanus toxoid IFNγ recall response in whole blood
PD-1 antagonist antibody nivolumab shows no inhibition
ANB030 Functional Agonist Activity in Whole Blood is Dependent on FcγR Engagement

ANB030 human IgG2, IgG4, or IgG1(L234A,L235A) isotypes lack agonist activity in solution.
Alopecia Areata is an immune-mediated disease:

- Alopecia areata is an immune-mediated form of hair loss resulting from breakdown of immune privilege that is driven by keratinocyte and melanocyte antigen-specific T cells producing IFNγ.

Healthy Hair Follicle:
- Low MHC class I
- Locally immune suppressed

Alopecia areata Hair Follicle:
- NKG2D+CD8+ infiltrate into hair follicle root sheaths
- Excessive IFNγ production by activated T cells leads to loss of hair follicle immune privilege
- Abnormal expression of MHC class I and II molecules
- Subsequent destruction of hair follicle cells & hair loss
Inhibition of IFNγ Production by ANB030 in Human Alopecia Areata PBMCs Stimulated with Keratinocyte Peptide Antigens

Alopecia areata is an immune-mediated form of hair loss resulting from breakdown of immune privilege that is driven by keratinocyte and melanocyte antigen-specific T cells producing IFNγ.

Keratinocyte Antigen Pool 1
Secreted IFNγ (Day 5)
Normalized Results from 12 Donors

IFNγ (pg/ml)
(% of no ANB030)

Antibody (nM)

PD-1 agonist discovery for autoimmune/inflammatory disease
PD-1 Signaling in T Cells

ANB030 Induces SHP2 but not SHP1 Recruitment to PD-1 after Activation of Jurkat PD-1 Cells

ANB030 had no effect on signaling pathways in the absence of T cell activation.
NSG/Hu-PBMC Graft vs. Host Disease Model

Day 0: Irradiation
0.9 x 10^7 hu PBMC i.v.
mAb dosing 24-hr-post PBMC

Endpoints:
- Weight loss (-20%)
- Death
- GvHD scores

Groups:
1. Isotype control IgG1
2. Anti-PD-1 agonist IgG1 (ANB030)
3. CTLA-4-Ig (positive control)
PD-1 Agonist Antibody ANB030 is Efficacious in an Acute Xenogeneic Graft vs. Host Disease Model

Efficacy of ANB030 in the model is dependent on its IgG1 isotype

GvHD Kaplan-Meier Plot

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Median Survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isotype</td>
<td>20 days</td>
</tr>
<tr>
<td>ANB030</td>
<td>39.5 days</td>
</tr>
</tbody>
</table>

* p = 0.02
Summary:
PD-1 Agonist Discovery for Autoimmune/Inflammatory Disease

- A functional agonist anti-PD-1 antibody that down-regulates antigen-specific immune responses and lacks antagonist activity has been discovered and optimized
- ANB030 is a humanized IgG1/κ anti-PD-1 agonist antibody that is non-blocking for PD-L1 binding and requires Fcγ receptor engagement for its functional activity in solution
- Signaling mechanism studies show similar PD-1-dependent effects for ANB030 and PD-L1-Fc
- ANB030 demonstrated efficacy in a xenogeneic NSG-Human-PBMC graft vs. host disease model
- An IND for ANB030 has been filed and Phase 1 clinical trial initiation is anticipated in H1 2020
- Anti-PD-1 antibodies that mimic activity of natural ligands and down-modulate T cell responses have the potential to restore and maintain immune balance in autoimmune and inflammatory diseases
Acknowledgments

- Cell Biology: Allison Rooks, Jack Manorek, Natasha Del Cid, Eric Hare, Nina Schommer
- Protein Sciences: Larry Altobell, Robert Morse, Greg Gold
- Molecular Biology & Protein Expression: Geoff Tomlinson, Brandon Dolan
- Marilyn Kehry, Ph.D. V. P. Cell & Functional Biology
- Stephen Parmley, V.P. Molecular Biology & Protein Sciences
- Martin Dahl, Executive Director Cell & Translational Biology
- Margaret Marino, V.P. Project Management