Rosnilimab, a Selective and Potent Depleter of Pathogenic T Cells, Demonstrates Efficacy, Safety and Translational Proof of Mechanism in a Rheumatoid Arthritis Phase 2B Trial

Jonathan Graf,¹ Amy M. Archer,² Sergii Kovalenko,³ Katarzyna Kolossa,⁴ John Serpa,⁵ Tamta Kobakhidze,⁶ Daniela Cepoi,ⁿ Andrea Everding,⁶ Costantino Pitzalis,⁶ Catherine Aversa,² Martin Dahl,² May Hafez,² Paul Lizzul,² Priya Raina,² Bruce Randazzo,² Yangsu Ren,² Khalil Saikali,² Cailin Sibley,² Gerd R. Burmester,¹⁰ Jacques-Eric Gottenberg,¹¹ Iain McInnes,¹² Eduardo Mysler,¹³ Lee S. Simon,¹⁴ Josef S. Smolen,¹⁵ Jeffrey A. Sparks,¹⁶ Ronald van Vollenhoven,¹ⁿ Michael Weinblatt,¹ፆ Paul Emery¹९

¹UCSF, San Francisco, CA, USA; ²AnaptysBio, San Diego, CA, USA; ³Arensia Exploratory Medicine, Kyiv, Ukraine; ⁴MICS Centrum Medycze, Bydgoszcz, Poland; ⁵Allied Biomedical Research Institute, Miami, FL, USA; ⁶Research Institute of Clinical Medicine Todua Clinic, Tbilisi, Georgia; ⁷Nicolae Testemitanu State University of Medicine & Pharmacy, Chisinau, Moldova; ⁸MVZ Rheumatologie & Autoimmunmedzin Hamburg GmbH, Hamburg, Germany; ⁹QMUL, London, UK; ¹⁰Charité University Hospital, Berlin, Germany; ¹¹Hautepierre Hospital, Strasbourg, France; ¹²University of Glasgow, Glasgow, Scotland; ¹³Organizacion Medica de Investigatcion, Buenos Aires, Argentina; ¹⁴SDG LLC, West Newton, MA, USA; ¹⁵Medical University of Vienna, Vienna, Austria; ¹⁶Brigham and Women's Hospital, Boston, MA, USA; ¹⁷Amsterdam UMC, Amsterdam, Netherlands; ¹⁸Harvard Medical School, Boston, MA, USA; ¹⁹Leeds NIHR Biomedical Research Centre, LTHT Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK

Sponsored by AnaptysBio

Disclosures

J Graf: grant/research support from Amgen, AnaptysBio, Fate therapeutics, Sonoma Biotherapeutics; consultant for AnaptysBio, ImmPACT Bio. C Pitzalis: consultant for AbbVie/Abbott, AnaptysBio, Novartis; grant/research support from AbbVie/Abbott, Novartis, Pfizer, Roche, Sanofi; independent contractor for AbbVie/Abbott, AnaptysBio, Novartis, Roche, Sanofi; speaker for AbbVie/Abbott, Novartis, Roche, Sanofi, and UCB. GR Burmester: honoraria for lectures and consulting from: AbbVie, Alfasigma, Amgen, AnaptysBio, Biogen, Gilead, Lilly, MSA, MSD, Pfizer, Sandoz, Sanofi, UCB. JE Gottenberg: speaker for AbbVie/Abbott, Amgen, BMS, Eli Lilly, Galapagos, Gilead, Johnson & Johnson, Novartis, Pfizer, and Sanofi; consultant to AnaptysBio. I McInnes: advisor/review panel member for AbbVie/Abbott, Absci, Amgen, AZ, Boehringer-Ingelheim, BMS, Cabaletta, Causeway Therapeutics, Compugen, Dextera, Elasmogen, Eli Lilly, Janssen, Montai, Moonlake, Morningside, Novartis, Pfizer, Pioneering Medicines, Recludix, Roche, Sanofi, SciRhom, Sixtry, UCB; consultant to AnaptysBio; grant/research support from AZ, BMS, Compugen, Dextera, Eli Lilly, Novartis, SciRhom, UCB; stock options or bond holdings in a for-profit corporation or self-directed pension plan for Cabaletta, Causeway, Compugen, Dextera, and Recludix. E Mysler is advisor/review panel member and receives grant/research support from AbbVie/Abbott, AZ, GSK, Novartis, and Pfizer; consultant to AbbVie/Abbott, AnaptysBio, AstraZeneca, GSK, Novartis, Pfizer; speaker for AbbVie/Abbott, AZ, GSK, Novartis, and Pfizer. **LS Simon**: consultant, independent contractor for AnaptysBio, Asahi, AZ, Avenue, BioViva, BMS, Eupraxia, Galvani, GSK, Immunovant, Inmedix, Kiniksa. JA Sparks: consultant for Boehringer-Ingelheim, BMS, Fresenius Kabi, Gilead, GSK, Inova Diagnostics, Invivyd, Johnson & Johnson, Merck, MustangBio, Novartis, Optum, Pfizer, ReCor, Sana, Sobi, UCB; research grant/support from Boehringer-Ingelheim, Johnson & Johnson, Sonoma. R van Vollenhoven: advisor/review panel member for AbbVie, AZ, Biogen, BMS, Cabaletta, Galapagos, GSK, Janssen, Kyowakirin, Merck, Pfizer, RemeGen, Sanofi, UCB; consultant for AbbVie, AnaptysBio, AZ, Biogen, BMS, Cabaletta, Galapagos, GSK, Janssen, Kyowakirin, Merck, Pfizer, RemeGen, Sanofi, UCB; Grant/research support from Alfasigma, AZ, BMS, Caletta, Galapagos, GSK, Merck, Novartis, Pfizer, RemeGen, Roche, Sanofi, UCB; speaker for AbbVie, AZ, Biogen BMS, Cabaletta, GSK, Janssen, Kyowakirin, Merck, Pfizer, Sanofi, UCB. M Weinblatt: Consultant for Aclaris, Amgen, AnaptysBio, Artiva Bio, Biohaven, BMS, Curie Bio, Deep Cure, Forward Therapeutics, Eli Lilly, Gilead, Ignite, Janux Therapeutics, Johnson & Johnson, Lifordi, Marvel Bio, Matchpoint, Merck, Neutrolis, Novartis, Roche, Santa Ana, Sana, Sci Rhom, Set Point, Surf Therapeutics, Thymmune, Xencorp, ZuraBio; grant/research support from BMS; stock options Canfite, Inmedix, Scipher. **P Emery**: Advisor/review panel member for Abbvie, Activa, AnaptysBio, AstraZeneca, BMS, Boehringer-Ingelheim, Eli Lilly, Galapagos, Gilead, BMS,

S Kovalenko, K Kolossa, T Kobakhidze, D Cepoi, A Everding have nothing to disclose

Immunovant, Janssen, Novartis; Clinical trials for Abbvie, BMS, Eli Lilly, Novartis, Pfizer, Samsung

A Archer, C Aversa, M Dahl, M Hafez, P Lizzul, P Raina, B Randazzo, Y Ren, K Saikali, C Sibley are employees and shareholders of AnaptysBio

Background

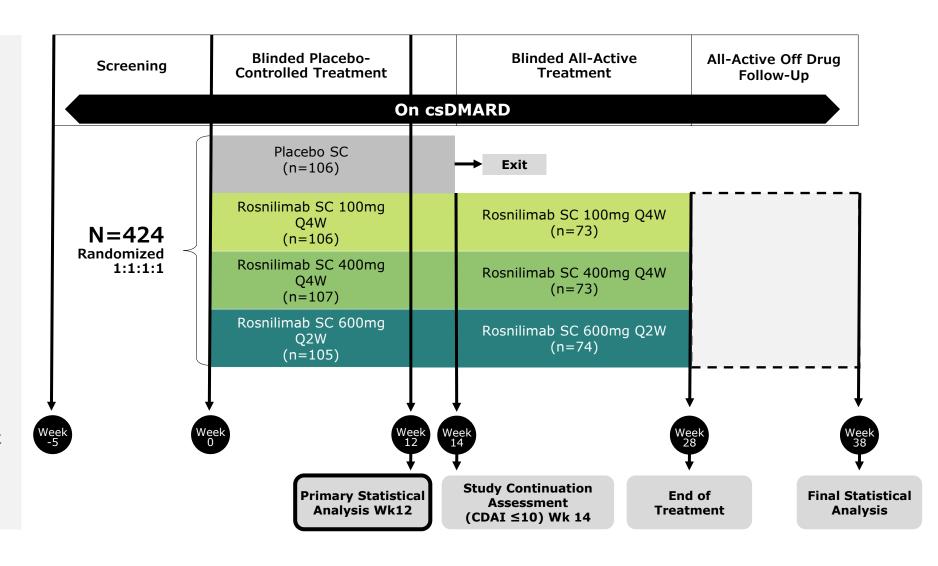
- Pathogenic T cells (e.g., PD-1^{high} Tfh/Tph, Teff) play a role in inflammation, are upstream to a broad range of clinically validated targets in RA including TNF-a, IL-6, and B cells and are found in very low levels in healthy individuals^{1,2}
 - These cells are enriched in patients with RA (>80% of synovial T cells and 3x higher in peripheral blood)^{2,3}
 - Tfh/Tph cells drive B cell activation and maturation, including autoantibody producing cells¹
 - Activated Teff cells proliferate and secrete inflammatory cytokines (e.g., IFNγ)
- Rosnilimab, an investigational monoclonal antibody, is a selective and potent depleter of pathogenic T cells that has the potential advantage of restoring immune homeostasis

Objective

Report complete study results for safety and efficacy of rosnilimab in a Phase 2B study in patients with moderate-to-severe rheumatoid arthritis

Global, Randomized, Placebo-controlled Phase 2B Trial with Rosnilimab in Moderate-to-Severe Rheumatoid Arthritis

Key Inclusion Criteria


- Seropositive RA
- ≥6 swollen and ≥6 tender joints
- hs-CRP ≥ 3mg/L during Screening
- Concurrent use of 1 or 2 csDMARDs that were initiated at least 3 months before screening

Key Exclusion Criteria

 Inadequate response, loss of response, or intolerance to any combination of ≥ 3 b/tsDMARD classes

Primary Endpoint

 Mean change from baseline at week 12 for DAS28-CRP

ClinicalTrials.gov: NCT06041269

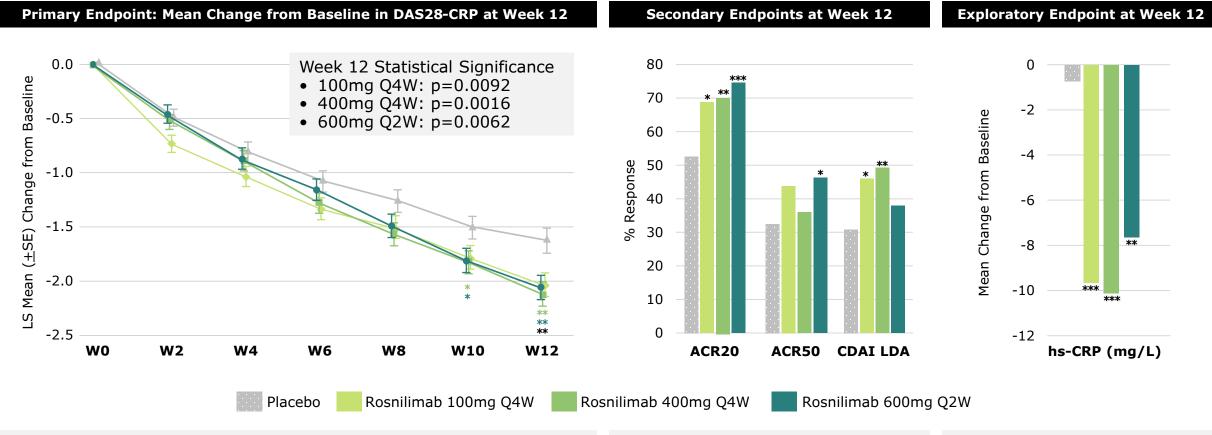
Statistical Analysis

Analysis populations and associated imputation

- ITT population (all randomized)
 - Dichotomous outcomes
 - NRI at Week 12
 - NRI at Week 28
 - Participants with CDAI>10 at Week 14 could not continue in the all-active period regardless of meeting ACR20, ACR50 or ACR70
 - Thus, in the Week 28 NRI analysis were imputed as nonresponders
 - Continuous measures
 - MMRM for Primary Analysis through Week 12
 - MI-LMCF for all analyses that include a timepoint beyond Week 12
- Completer population
 - Subjects with at least one efficacy measure at Week 38
- Safety population
 - Those randomized that received at least one dose of study drug matching the ITT population (all randomized)

Baseline Demographics

Baseline Characteristic	Placebo (N=106)	Rosnilimab 100mg Q4W (N=106)	Rosnilimab 400mg Q4W (N=107)	Rosnilimab 600mg Q2W (N=105)	Overall (N=424)
Age, years, mean (SD)	58 (11)	57 (10)	57 (12)	56 (11)	57 (11)
Female, n (%)	83 (78%)	79 (75%)	79 (74%)	80 (76%)	321 (76%)
Weight (kg), mean (SD)	78 (17)	78 (19)	81 (19)	77 (16)	78 (18)
Geographic region, n (%) US and Canada Europe	37 (35%) 69 (65%)	35 (33%) 71 (67%)	36 (34%) 71 (66%)	28 (27%) 77 (73%)	136 (32%) 288 (68%)
Race, n (%) White Black or African American Asian Other	102 (96%) 3 (3%) 0 (0%) 2 (2%)	102 (96%) 1 (<1%) 0 (0%) 5 (5%)	103 (96%) 4 (4%) 0 (0%) 0 (0%)	101 (96%) 4 (4%) 0 (0%) 0 (0%)	408 (96%) 12 (3%) 0 (0%) 7 (2%)


Baseline Disease Characteristics

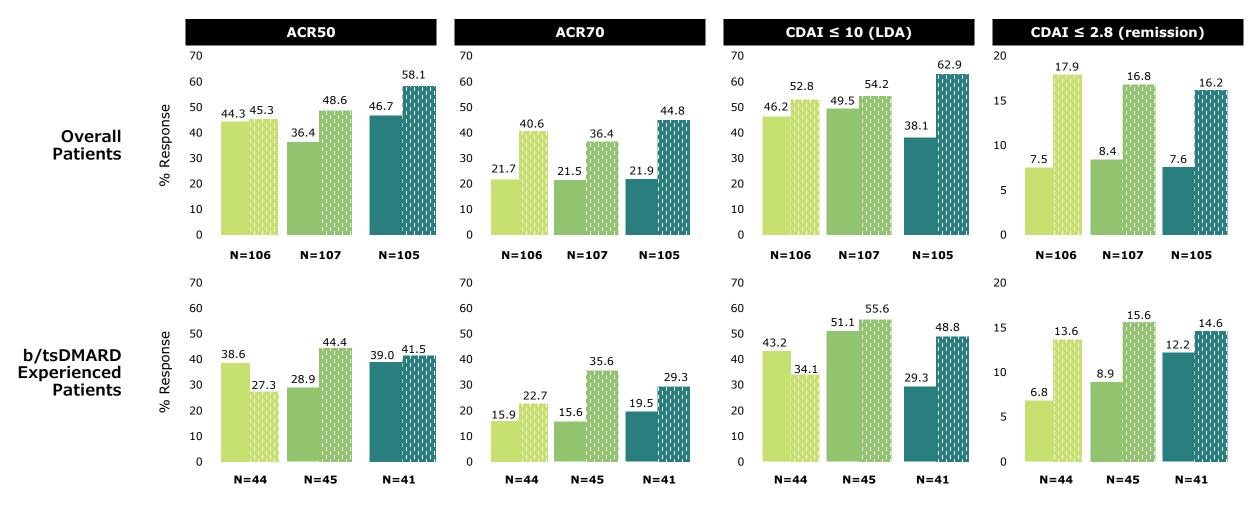
Baseline Characteristic	Placebo (N=106)	Rosnilimab 100mg Q4W (N=106)	Rosnilimab 400mg Q4W (N=107)	Rosnilimab 600mg Q2W (N=105)	Overall (N=424)
Duration of disease, years, mean (SD)	11 (9)	11 (10)	9 (8)	10 (9)	10 (9)
Prior b/tsDMARD, n (%)	44 (41.5%)	44 (41.5%)	45 (42.1%)	41 (39.0%)	174 (41.0%)
>1 b/tsDMARD classes, n (%)	5 (11.4%)	7 (15.9%)	5 (11.1%)	8 (19.5%)	25 (14.4%)
JAK inhibitor, n (%)	12 (27.3%)	10 (22.7%)	15 (33.3%)	13 (31.7%)	50 (28.7%)
RF positive, n (%)	101 (95.3%)	102 (96.2%)	99 (92.5%)	101 (96.2%)	403 (95.0%)
CCP positive, n (%)	96 (90.6%)	96 (90.6%)	84 (78.5%)	91 (86.7%)	367 (86.6%)
DAS28-CRP, mean (SD)	5.7 (0.8)	5.6 (0.8)	5.7 (0.9)	5.7 (0.8)	5.6 (0.8)
CDAI, mean (SD) CDAI >22, n (%)	37.9 (10.2) 101 (95%)	37.2 (10.6) 101 (95%)	37.1 (10.6) 102 (95%)	38.6 (11) 100 (95%)	37.7 (10.6) 404 (95%)
TJC68, mean (SD)	23 (13)	22 (12)	22 (12)	23 (13)	22 (12)
SJC66, mean (SD)	14 (7)	15 (7)	14 (7)	16 (9)	15 (8)
hs-CRP, mean (SD) mg/L	16 (22)	17 (20)	21 (26)	19 (28)	18 (24)

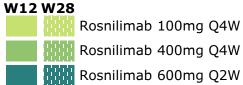
DAS28-CRP – Disease Activity Score 28-C-reactive protein; CDAI – Clinical Disease Activity Index; TJC68 – tender joint count, 68 joints; SJC66 – swollen joint count, 66 joints; hs-CRP – high-sensitivity C-reactive protein, SD- standard deviation, N – total number of subjects in analysis set, n – number of subjects in specific category; b/tsDMARD - biologic/targeted synthetic Disease Modifying Antirheumatic Drugs

Primary and Select Secondary and Exploratory Endpoints Show Statistical Significance at Week 12

ITT population, MMRM and NRI analysis

All dose arms demonstrated statistically significant changes in DAS28-CRP

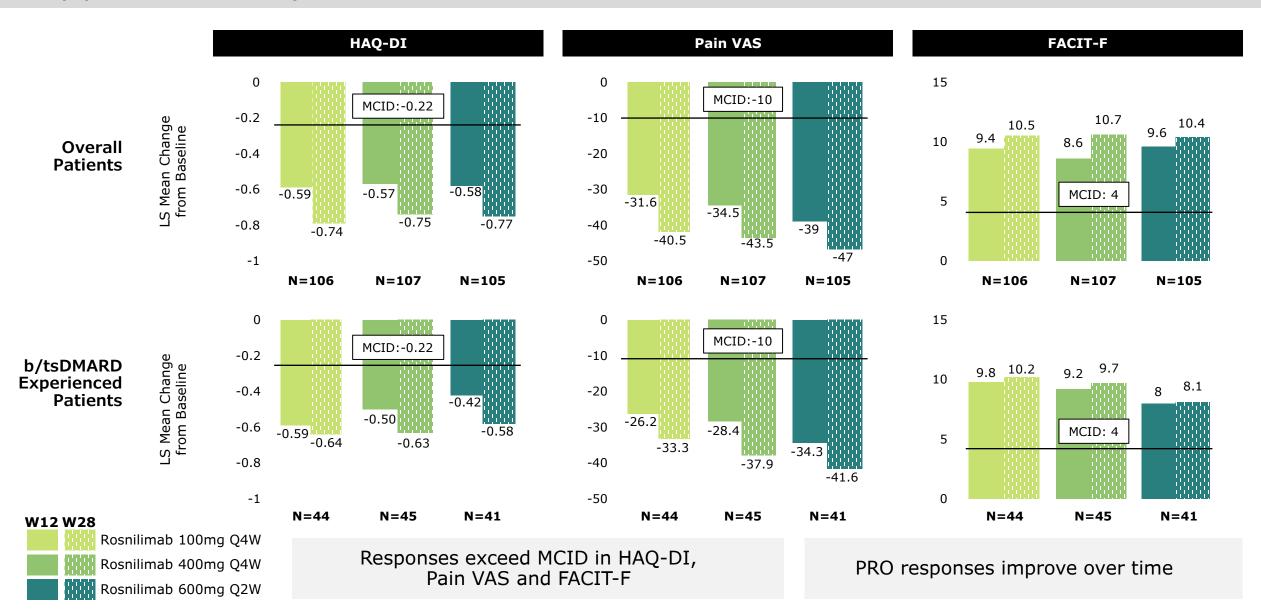

All dose arms showed statistically significant changes for traditional FDA regulatory endpoint (ACR20)


More stringent endpoints showed numerical, if not statistically significant, responses versus placebo at Week 12 All dose arms had statistically significant changes for hs-CRP

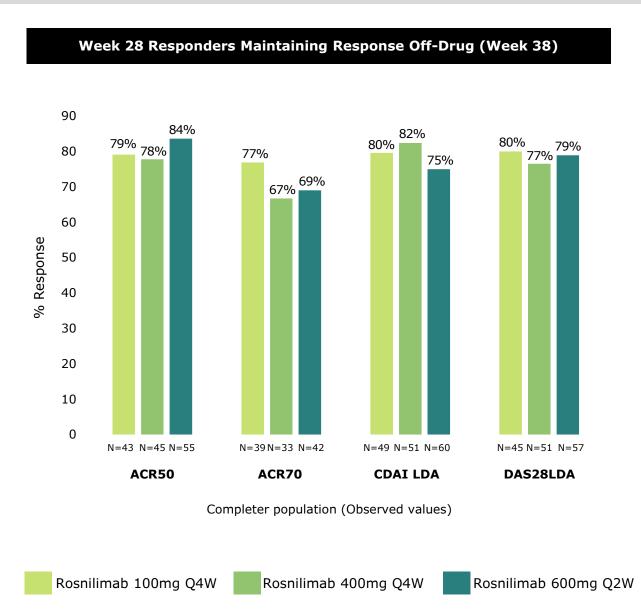
Statistically significant differentiation of hs-CRP occurred as early as Week 2

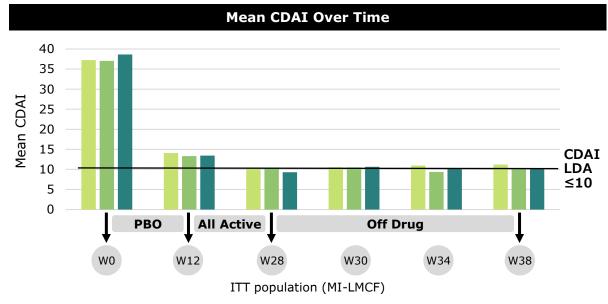
Responses Increase from Week 12 to Week 28 in Overall and b/tsDMARD Experienced Population

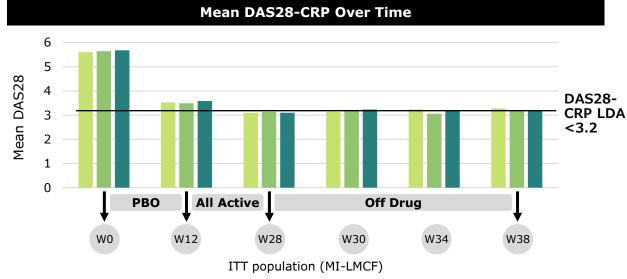
ITT population, NRI analysis



- Consistent improvement across endpoints and populations in the 400mg and 600mg dose arms
- These improvements were despite 14 ACR50 and 3 ACR70 responders at the mandated study continuation visit being imputed as nonresponders at Week 28

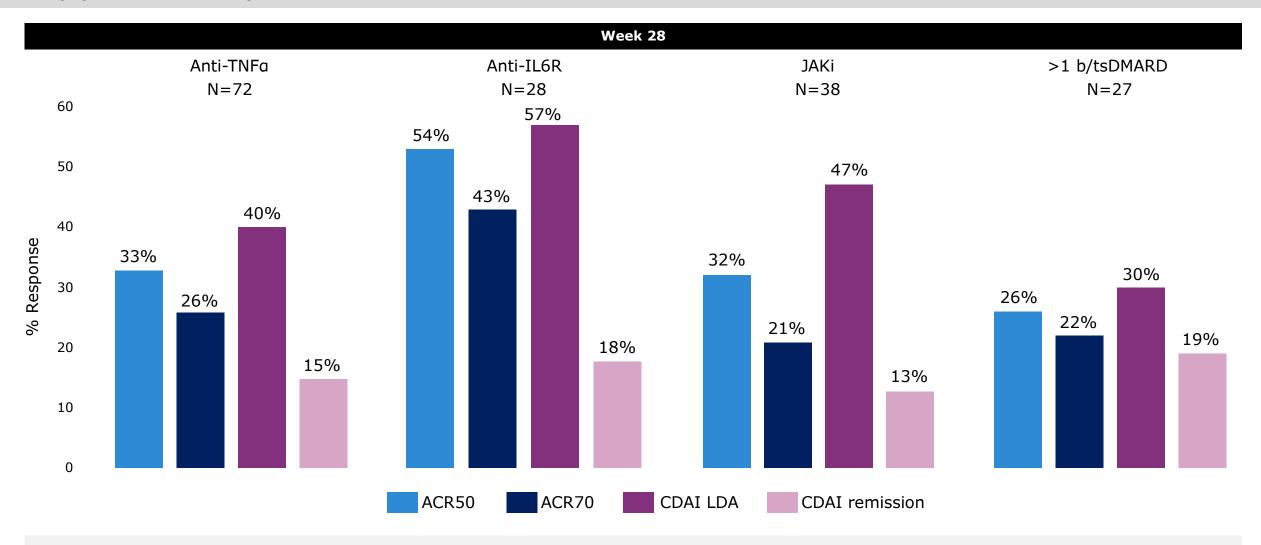

Improvement in Patient Reported Outcome Measures from Week 12 to Week 28 in Overall and b/tsDMARD Experienced Population


ITT population, MI-LMCF analysis



MCID = minimum clinically important difference

Responses Were Durable Off Study Drug for 3 Months

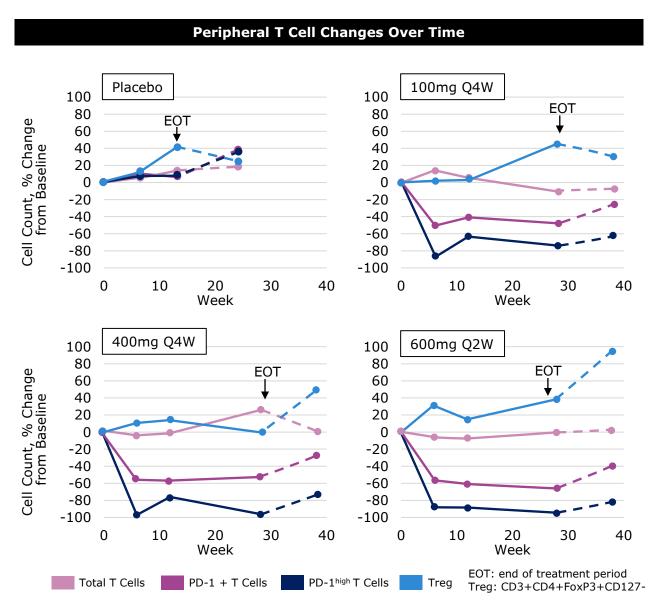


Responses Across Endpoints Based on Prior Therapeutic Agent (Rosnilimab Pooled Doses)

ITT population, NRI analysis

Similar effects observed in more stringent endpoints regardless of prior therapy type, including JAKis

Safety and Tolerability: Treatment Initiation Through Week 38 (End of Follow Up)

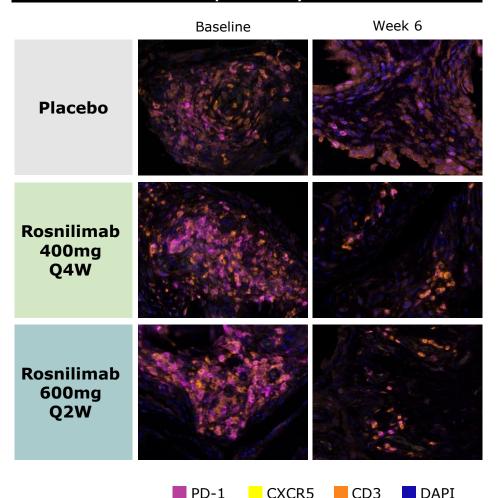

	Placebo** N=106 n (Rate)	Rosnilimab 100mg q4w N=106 n (Rate)	Rosnilimab 400mg q4w N=107 n (Rate)	Rosnilimab 600mg q2w N=105 n (Rate)	All Rosnilimab N=318 n (Rate)
Subjects with at least one AE	47 (152.72)	75 (238.29)	69 (190.35)	57 (140.09)	201 (185.41)
Subjects with at least one AE related to study treatment	19 (51.15)	17 (29.07)	28 (49.50)	20 (35.38)	65 (37.89)
Subjects with at least one severe AE	3 (7.12)	4 (6.00)	3 (4.38)	4 (6.13)	11 (5.49)
Subjects with at least one severe study treatment-related AE	1 (2.35)	0	1 (1.45)	0	1 (0.49)
Subjects with at least one SAE	1 (2.35)	3 (4.46)	5 (7.34)	4 (6.14)	12 (5.98)
Subjects with at least one SAE related to study treatment	1 (2.35)	0	0	0	0
Subjects with at least one AE leading to study treatment discontinuation	1 (2.35)	1 (1.48)	3 (4.36)	2 (3.01)	6 (2.95)
Subjects with at least one SAE leading to study treatment discontinuation	1 (2.35)	0	0	0	0
Infections and infestations	23 (60.22)	43 (87.34)	43 (83.83)	35 (64.74)	121 (78.27)
Serious (SAE) infections	1 (2.35)	1 (1.48)	1 (1.45)	1 (1.50)	3 (1.48)
Opportunistic infections*	2 (4.75)	1 (1.48)	1 (1.45)	1 (1.50)	3 (1.47)
MACE	0	1 (1.47)	0	0	1 (0.49)
Malignancies	0	0	0	0	0
Deaths	0	0	0	0	0

- Rosnilimab was well tolerated with no safety dose effect
 - Low rates of treatment discontinuation on account of TEAEs
- Serious infections and opportunistic infections (herpes zoster) were balanced with no dose response
- 1 MACE in 100 mg group was ischemic stroke in participant with stenosis in common carotid artery
- There were no malignancies or deaths

^{*}Herpes zoster is the only opportunistic infection. **Placebo participants received treatment through week 12.

Translational Data

Rosnilimab Potently Reduced Pathogenic T Cells in Blood

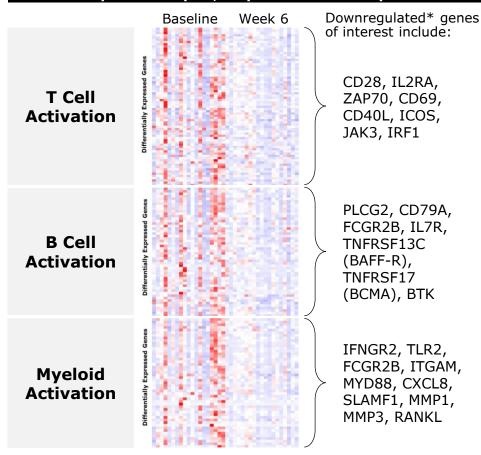


- >90% reduction in PD-1^{high} T cell numbers (including Tph cells) at highest doses
 Reductions persist 12 Weeks after last dose
- No changes in overall T cell numbers
 PD-1^{high} T cells ~5% of total T cells
- Treg numbers unchanged to increased
- Overall results in a favorable T cell composition reflective of healthy immune homeostasis

Rosnilimab Demonstrated Pathogenic T cell Depletion and Broad Downregulation of T cell, B cell and Myeloid Pathways in Synovium

Synovial immunohistochemistry n= 39 paired samples

Impact on Synovial PD-1+ T cells


Placebo increased 100mg dose

no consistent changes

400mg dose ~90% reduction

600mg dose ~90% reduction

Synovial bulk RNA-seq (rosnilimab pooled doses) n= 24 paired samples, responders & nonresponders

Gene ontology (GO) pathway analysis performed on samples with evidence of inflammation at baseline. Fold enrichment T cell activation 4.03, p=1.09e-24; B cell activation 4.06, p=1.77e-18; myeloid activation 4.15, p=6.44e-18 *p<0.05

CDAI LDA responders showed greater reductions in T cell and B cell activation (p < 0.0001 for both)

Representative IHC samples from synovial biopsies. % change calculated for synovial samples with ≥10cells/mm² in baseline biopsy. T_{nb}: PD-1+CD3+CD4+CXCR5-

Summary

- At Week 12, the primary endpoint of mean change in DAS28-CRP was achieved across all doses of rosnilimab compared to placebo, as was ACR20
- At Week 28, improvements observed in ACR50/70, CDAI LDA and CDAI remission
 - Responses independent of prior therapy type (including JAKi)
- At Week 38, 3 months off study drug, clinical responses were sustained
- Safety data through Week 38 demonstrated rosnilimab was well tolerated, including no malignancies and no deaths
- Rosnilimab potently reduced pathogenic T cells in the blood and synovium resulting in downregulation of a wide range of inflammatory pathways

Conclusions

- Rosnilimab, with a novel MoA, demonstrated a meaningful and durable clinical benefit along with a favorable safety profile in this large Phase 2B rheumatoid arthritis trial
- Clinical proof-of-concept for pathogenic T cell depletion was achieved and corroborated by translational validation in the blood and synovium
- Based on these data and the unmet need in RA, further clinical development of rosnilimab is warranted

Thank You!

to **Patients** Caregivers **Investigators Study Staff** & Everyone involved in this study!

Medical writing assistance and graphics support was provided by Susan Sutch, PharmD of *Get-it-Write* Med Coms, Ellen Zigmont, PharmD, BCOP, and Cynthia Alexander, PhD of Anaptys, Lori Chollar and team of TLC Creative Services, and Richard Leff, MD a clinical consultant to Anaptys