Phenotyping of Human UC Colonic Tissue Reveals Inflammatory Pathway Gene Expression in PD-1+ Conventional and Regulatory T Cells Which Overlap with Those Regulated by Rosnilimab in a Mouse Model of Colitis

Bryan Linggi, Chris Haines, Yangsu Ren, Stephen Parmley, Martin Dahl, John Kwon, Pejman Soroosh, Paul Lizzul, Cailin Sibley AnaptysBio, San Diego, CA, USA

BACKGROUND & OBJECTIVE

PD-1 and Ulcerative Colitis (UC)

- Activated T cells express PD-1 (e.g., PD-1+); those expressing high levels of PD-1 (e.g., PD- 1^{high}) are highly inflammatory and implicated in the pathogenesis of UC¹
- In UC lamina propria, multiple T cell subtypes express PD-1, including T peripheral helper cells (Tph) and T effector memory cells
- -The reduction of PD-1+ Tph cells has been shown to correlate with remission²
- In many inflammatory diseases, including IBD, regulatory T cells (Tregs) and specifically PD-1+ Tregs have been reported to be dysfunctional and demonstrate a proinflammatory phenotype^{3,4}

Rosnilimab (PD-1 agonist, IgG1)

- Mechanism of action and proposed impact on PD-1+ T cells (Fig. 1):
- -Depletion of PD-1^{high} Teff, Tfh, and Tph cells and agonism of remaining PD-1+ T cells resulting in:
- Reduced T cell migration, proliferation, and inflammatory cytokine secretion (e.g. IFNγ)
- Reduced Tfh and Tph-derived cytokines (IL-21 and CXCL13)
- In a mouse model of colitis, mice treated with rosnilimab showed reduced body weight loss, reduced inflammation of the colon, and reduced infiltration of CD4 T cells⁵

Objective: Characterize PD-1+ T cell subsets (conventional T cells [Tcon] and Tregs) from active UC patientderived colonic tissue and evaluate inflammatory pathways that may overlap with those regulated by rosnilimab in a mouse model of colitis

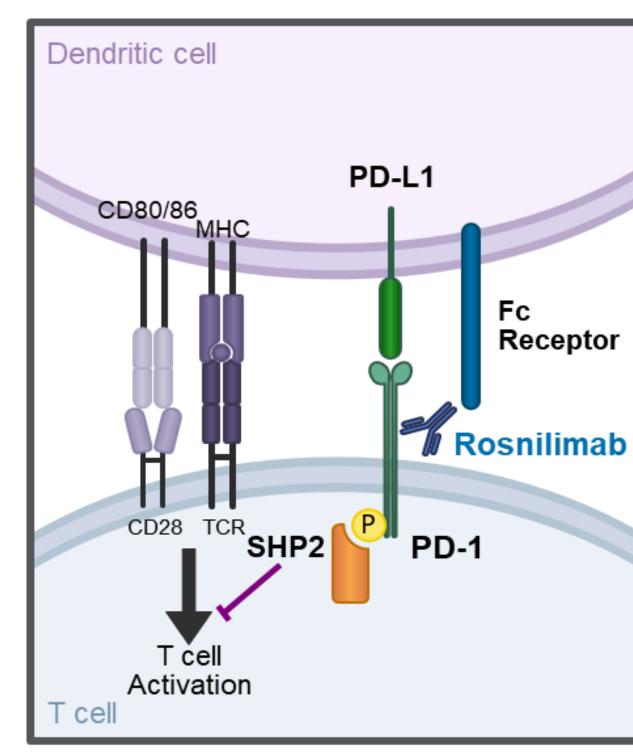


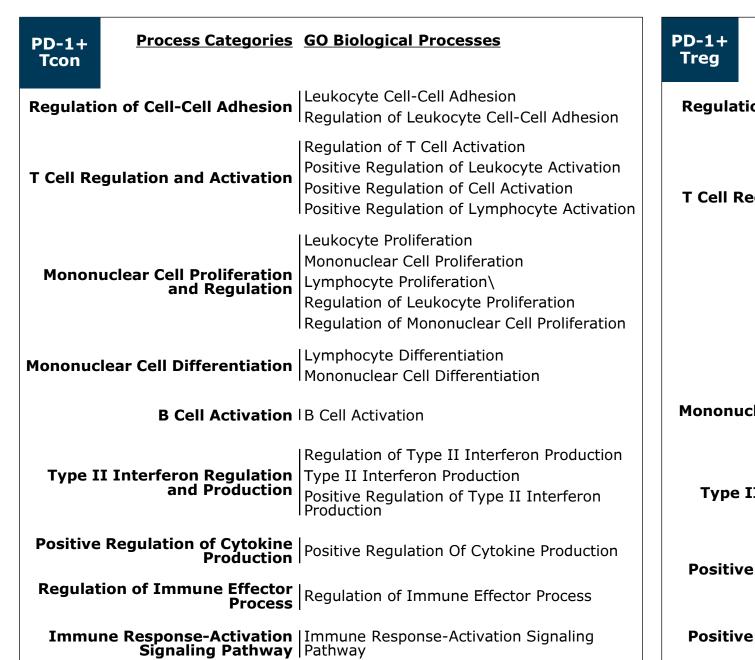
Figure 1. Rosnilimab proposed mechanism of action

METHODS

Secondary analyses of active UC patient-derived colonic tissue for differential gene expression

- A published dataset of CD3-sorted single-cell proteomics and transcriptomics from UC patients $(N=14)^6$ was used to characterize PD-1+ CD4 Tcon and Tregs
- Tcon and Treg (PD-1+ and PD-1 neg) pathway activity was estimated from gene expression via footprint analysis with Progeny⁷
- Treg pathway enrichment was performed with Gene Ontology (GO) 'Biological Processes' (BP) gene sets (Fig. 2, Fig. 3)

Gene expression and pathway enrichment analyses of colonic tissue from mice in human PD-1 (hPD1) CD4 T cell transfer murine model of colitis⁵:


- Bulk RNA-sequencing of mouse colonic tissue and subsequent gene expression and pathway enrichment analyses were performed to assess overlap with Reactome pathways involved in human UC8, including barrier function,9 fibrosis, 10 and inflammatory myeloid genes (Fig. 4, Fig. 5)
- -Treatment groups: naïve, isotype control mIgG2a, rosnilimab mIgG2a, or control anti-mIL-12 p40

RESULTS

Proinflammatory Genes were Upregulated in PD-1+ Tcon and PD-1+ Tregs Compared to PD-1 neg

- PD-1 protein expression analyses of T cells from UC patient lamina propria showed that 51% and 30% of Tcon and Tregs were PD-1+, respectively; both had increased JAK-STAT, TNFa, and NF-κB activity (not shown)
- Genes upregulated in PD-1+ Tcon and PD-1+ Tregs are associated with T cell activation and inflammatory pathways (Fig. 2)

PD-1+ T cells (Tcon and Tregs) Have Increased Expression of Genes Associated with Proinflammatory Processes

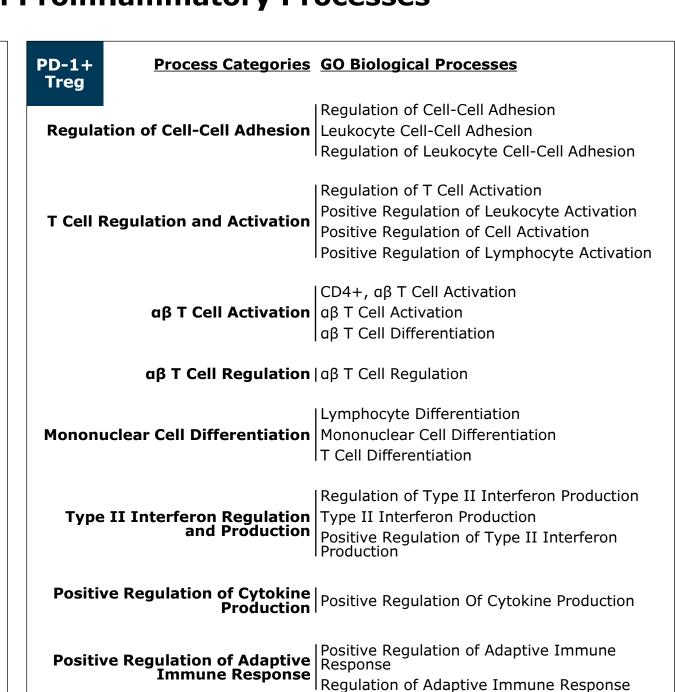


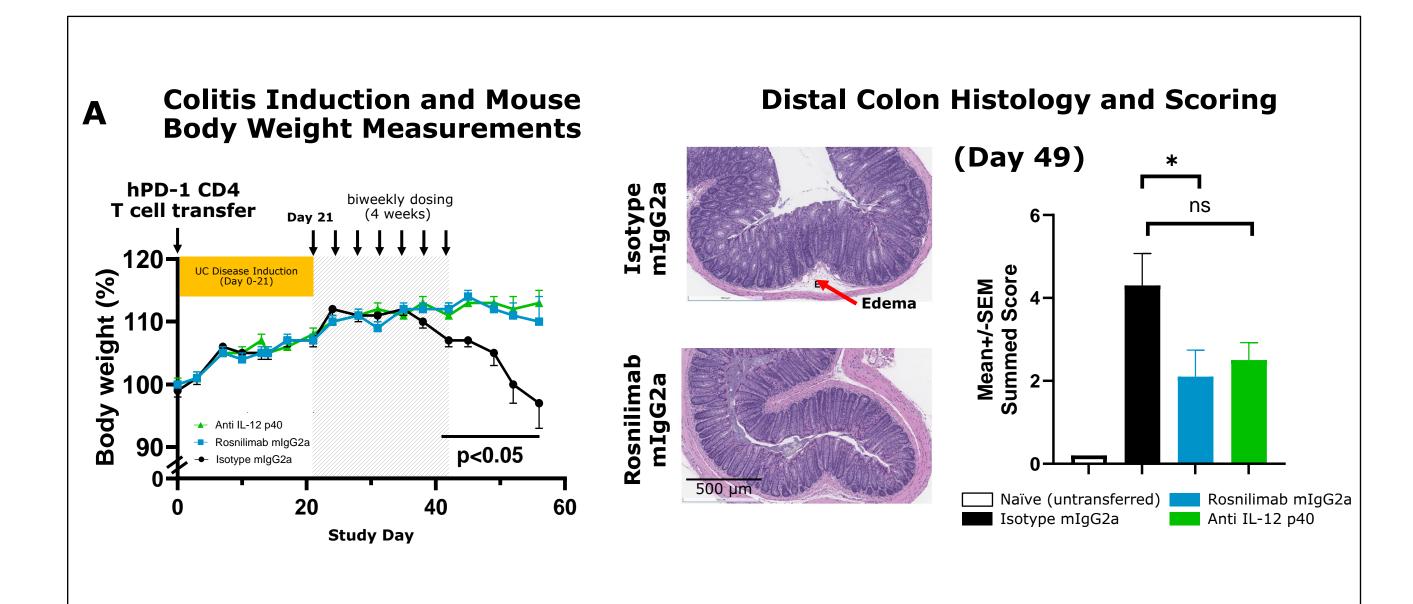
Figure 2. GO 'BP' pathway enrichment analyses of PD-1+ Tcon and Tregs. Top 20 pathways shown

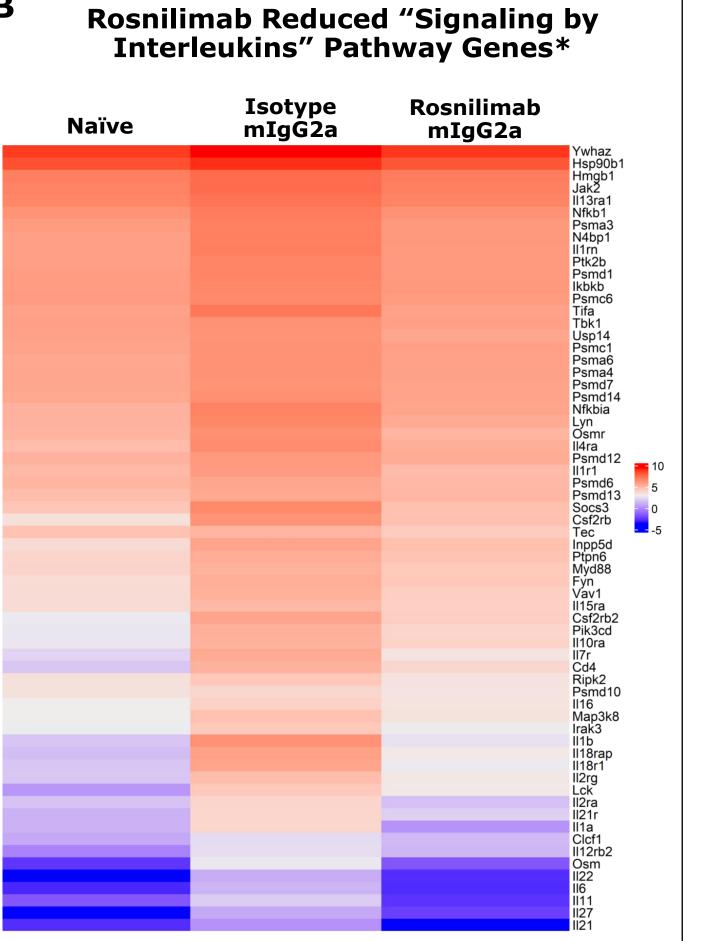
determined by statistical significance (fold change >1.5, adjusted p-value <.05)

RESULTS

PD-1+ Tregs in UC Colonic Tissue Expressed Higher Levels of Proinflammatory Genes

Selected Genes Differentially Regulated (PD-1+ vs PD-1 neg Tregs)

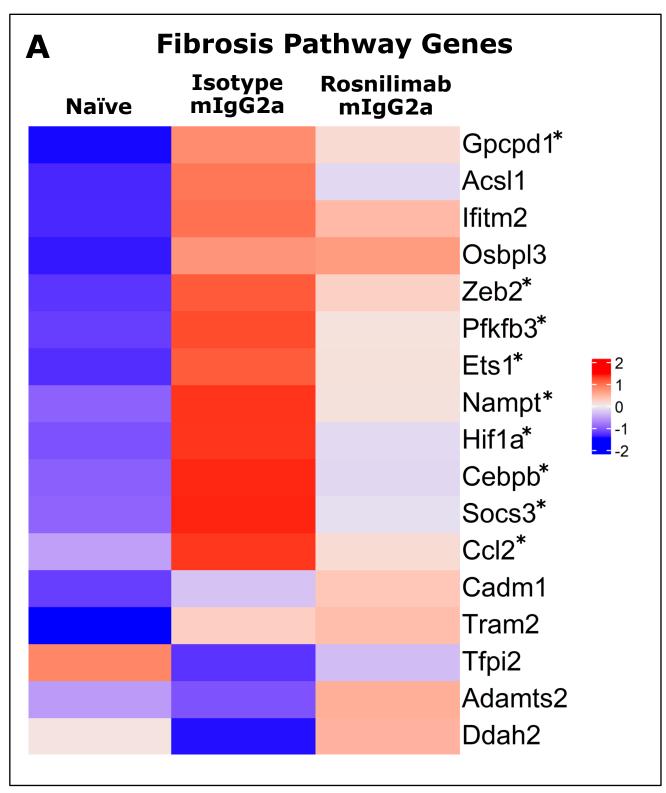

Gene	Function	Expression Level (PD-1+ Tregs)	log2FC	P value	Adjusted P value
IL17A	Inflammatory cytokine		2.52	1.12E-08	1.65E-04
IL12RB2	Inflammatory cytokine receptor		2.16	2.80E-20	4.10E-16
TNF	Inflammatory cytokine		1.65	1.27E-28	1.86E-24
IL23R	Inflammatory cytokine receptor		1.56	1.63E-08	2.38E-04
TBX21	Inflammatory transcription factor		1.50	4.80E-06	7.03E-02
TGFB1	Pro-fibrotic/anti-inflammatory cytokine		0.94	2.01E-10	2.94E-06
IL1R1	Inflammatory cytokine receptor		0.70	1.48E-07	2.17E-03
SELL	Regulation of trafficking		-1.11	3.95E-13	5.79E-09
IL2RA	Treg suppressive function	1	-1.18	1.22E-14	1.79E-10
CCR7	Regulation of trafficking		-1.86	1.10E-24	1.61E-20

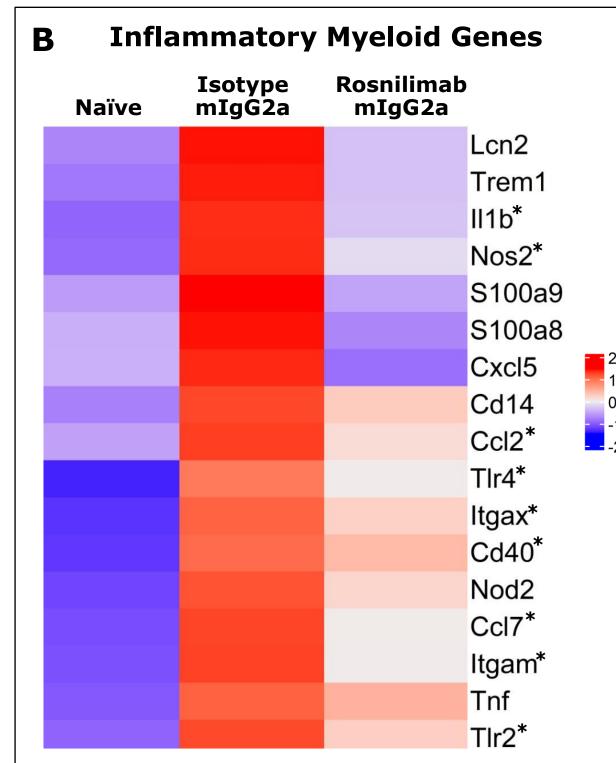

Figure 3. Panel of differential gene expression for key genes reported to be associated with dysregulated inflammatory Tregs or important for Treg suppressive function are shown in order of decreasing log2 FC (log2 fold change between PD-1+ and PD-1 neg Tregs)^{4,11-13}

PD-1+ Tregs showed (Fig. 3):

- Higher gene expression of several proinflammatory cytokines, cytokine receptors, and a transcription factor *Tbx21* (*Tbet*)
- Lower gene expression of surface molecules regulating trafficking and *IL2RA* (CD25), which contributes to Treg suppressive function

Genes in Pathways Involved in Human UC were Reduced to Naïve (non-T cell transferred) Levels with Rosnilimab **Treatment in Murine Model of Colitis**





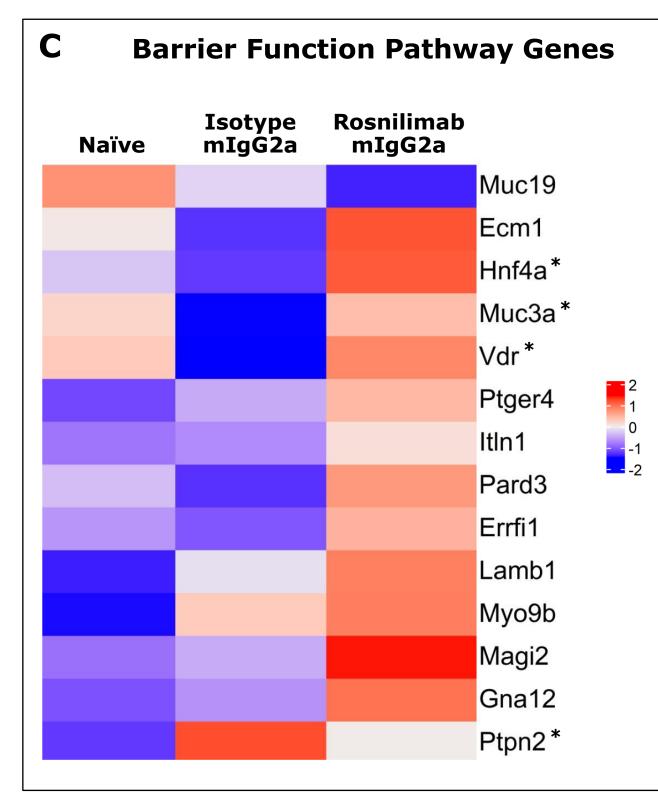

- In a murine model of colitis:
- Rosnilimab mIgG2a maintained body weight and significantly reduced colonic inflammation when dosed in a therapeutic regimen, compared to isotype control treated mice (Fig. 4A)
- Genes in pathways involved in human UC ("Signaling by interleukins" (e.g., II6) and "Chemokine receptors bind chemokines" (e.g., Ccl20), not shown) in mice treated with rosnilimab were comparable to naïve animals (Fig. 4B)

Figure 4. Schematic of colitis disease induction and treatment schedule and evaluation of colon morphological pathology via H&E staining and scoring of the distal colon at Day 49 (composite measurement of inflammation, hyperplasia, gland loss, and erosion) (A). Relative gene expression for "signaling by interleukins," shown among treatment groups in mouse model of colitis (B). *p<0.05 rosnilimab compared to isotype

Pathway Genes Specific to Fibrosis, Barrier Function, and **Inflammatory Myeloid Cells were Normalized by Rosnilimab**

 Pathway genes specific to fibrosis (Fig. 5A), inflammatory myeloid cells (Fig. 5B), and barrier function (Fig. 5C), were dysregulated in the murine model of colitis and normalized in rosnilimab-treated animals

Figure 5. Relative gene expression for fibrosis, barrier function, and myeloid-specific pathways shown among treatment groups in the mouse model of colitis. *p<0.05 rosnilimab compared to isotype mIgG2a

CONCLUSIONS

- In UC colon tissue, PD-1+ Tcon and Tregs had increased proinflammatory gene expression compared to respective PD-1 neg cells
- In a murine model of colitis, rosnilimab treatment normalized dysregulated pathways associated with human UC to naïve levels, consistent with previous preclinical findings
- Together, these data support the concept that PD-1+ Tcon and Tregs are proinflammatory and the ability of rosnilimab to reduce these cells, while also normalizing dysregulated fibrosis, barrier function, and inflammatory myeloid cell pathway gene signatures, may contribute to the potential therapeutic efficacy of rosnilimab in UC
- Combined with results from a Phase 1 healthy volunteer study, these data support the rationale for evaluating rosnilimab in moderate-to-severe UC in an ongoing Phase 2 study (NCT06127043)

ACKNOWLEDGEMENTS

- 1. This research was supported by Anaptys
- 2.All authors are employees and shareholders of Anaptys
- 3. Cynthia Alexander of Anaptys provided significant contribution to the writing, content development, and poster design
- 4. These data were previously presented at ECCO 2025 and DDW 2025

REFERENCES

- 1. Roosenboom B, et al. Scand J Gastroenterol 2021;56:671-79.
- 2. Long Y, et al. *Immunol Letters* 2021;233:2-10.
- 3. Lord James D; World J Gastroenterol 2015;21:11236-45.
- 4. Yu Qi T., et al. *Inflamm Bowel Dis* 2007;13:191-9.
- 5. Parmley S, et al. *United European Gastroenterol J* 2024;12:482 (Abstract MP448).
- 6. Gupta et al. *Cancer Cell* 2024;42:797-814.
- 7. Schubert M, et al. Nat Commun 2018;9:20.
- 8. Linggi B, et al. *Sci Rep* 2021;11:18243.
- 9. McCole DF. Inflamm Bowel Dis 2014;20:1829-49. 10.Dovrolis N, et al. Front Immunol 2022;13:1058237.
- 11. Viglietta V, et al. *J Exp Med* 2004; 199:971-979.
- 12.Lowther DE, et al. *JCI Insight* 2016;1(5):e85935.
- 13.Kitz A, et al. Cold Spring Harb Perspect Med 2018;8:a029041

